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Two-dimensional isoparametric finite elements are used to solve problems of heat and mass
trangfer in porous bodies. A comparison of the numerical calculations with the analytic solu-
tions of one-dimensional problems shows a very good agreement.

Using thermodynamics of irreversible processes, Lykov [1] obtained the widely accepted mathemati-
cal model of heat and mass transfer in capillary-porous bodies. The analytic solution of the corresponding
system of partial differential equations is connected with congiderable mathematical difficulties. There-
fore, we know only a few solutions, first and foremost for one-dimensional problems — problems with
boundary conditions not depending on time and with constant coefficients [2, 3].

Finite-difference methods [1, 4, 5] are widely used in engineering problems. In this paper another
possible approach to numerical analysis is proposed; it is based on the finite~-element method. The dis-
cretization obtained by this has considerable advantages for multidimensional problems in regions with
complicated geometry or in cases with nonconstant physical properties of the materials.

The finite-element method was applied to a problem of nonstationary heat conduction for the first
time in [6], while certain calculation schemes are given in [7].

Mutually connected electrical and hydrodynamic fluxes are studied in [8], and, subsequently, the finite-
element method is applied to electroosmotic flows in soils in [9]. However, the boundary conditions of the
problems in [8] and [9] essentially differ from those considered in the present work.

The connected problems of heat and mass exchange in the case of convective boundary conditions
lead, in the case of finite elements, to systems of algebraic equations with asymmetric matrices. Since
this is undesirable, in the investigation we propose such dimensionless parameters which lead to systems
with symmetric matrices.

The distribution of temperature and moisture in each zone Q€ of a moist body Q@ can be described by
the Lykov system [3}:

ot % 0% 0% du
— =A : ~+ erpc,, , 1
Pea ot ¢ ( dx? + ay® T a2 ) ee at (,)
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where t and u are potentials of heat and mass transfer, while the constants p, Cq» Cm> }‘q’ Am» & and 6 are
taken as constant and equal to the mean values, respectively, in each zone Q€.
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The general boundary conditions for the system are as follows:

t=1, onsurface !y, 3)

Aottt + jo 4o (E—1,) + (1—¢) rae,, (w—u,) = O on surface [, @)
u'= u,on surface I'y, (5)

Aytits + jo, 4 Ay dvin 4- o, (4 —1,) = Oon surface I, ®)

where ty, uy, ty, U, jq> Im>» &g and o . are positive functions of time specified on the boundary.

m
Equations (1)-(6) can be written in dimensionless form as a system of mutually coupled equations of
the parabolic type:

oT -0t T T T U o LI
LTy (0T 9T \,+ PR (@)
00 \ 9X? oy? VAN axr oy? 0z*
C ou L [ T | O°T | aT)ﬂ,_L U | U AU
™80 °(ax2 Tayr T gz ) ax: ' gy | 9z ) ®
which satisfy the boundary conditions
T =T, on surface 'y, (9)
L ' aT Yo or v, or Y’j - JF = 0Oon surface [y, (10)
0X ov Yooz )
U= U, onsurface [y, (11)
r oU . oU . oU ,
L ( X Ve 5 Yy 57 '\;3) -+ ,ﬁ = (Qon surface 1‘4,. (12)
where J*(‘1 and J1§1 are given by the following expressions:
Jf=A,(T—T)+AU~-U,)+J, (13)
Jn=Ag(T —~Ty) + A, U—Uy) . (14)

In the expressions (N-(14), T = t/tg, U=u/ug, 8 = 7/1q, X =x/1, Y =y/1, Z = z/1 are dimensionless
guantities, C are generalized capacities, and I, A, and J* can be understood, respectively, as generalized
coefficients of transfer and specific flows.

By means of an appropriate definition of the generalized coefficients we can always ensure fulfillment
of the condition

Lo=Ls (15)
thus making the system of Egs. (7)-(8) symmetric,
With this aim, taking
L= Ly = erd, 812, (16)

c =(_9£qi)<fa6 ) Coe {Lixh )(.erxmua)
¢ gy i, Y ATy Aty T

A, +erh, b g erh,t,
e (R 1), 1 e

from Egs. (1)-(6) we have
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The dimensionless quantities obtained by us insignificantly differ from those introduced by Lykov [3].
Such a form provides a certain amount of freedom in the description of the problem when the properties of
the material depend on spatial variables.

The unknown functions T and U can be approximated for a certain ¢ in the entire domain of definition
as follows:

k
T = 2 N.(X, Y, Z)T,(6) = NT (18)
r=1
and
k
U= E N.(X, Y, Z)U, (8 = NU, (19)

r=1
where N, are functions that are gsmooth on elements and are piecewise smooth in the entire region, while
T, {or T) and U, (or U) are parameters of the nodes [5].

We obtained by the Galerkin method described in [8] a system of equations relative to k values of T,
and k values of U,.. For the point r the integrals, on the region £, of the product of the weighting function
N, with the expressions obtained by substituting (18) and (19) into Egs. (7) and (8) are zero:

2 2 2 / 2, 2 2
S'N,‘[Lq(” 0T aT)+Le(aU LY o )—cq N ]dQ:O, (20)

ax*  ay: = oz? ax: = gy 072
;0T o*T T /[ *U U U U ]
N L + + +L + + —Cp —— | dQ =0, 21
S [‘*(\axz oy? 622> m(\axz ooy 522> ™ o0 } 1)
Equations (20) and (21) are transformed according to Green's expressions and in matrix form are
Lo - Cop--T=0, 22)
where L and C are symmetric 2k X 2k matrices
L, L c, 0 i
L= |72 ™| (C=|"¢ , 23
!Lé Lm‘ 0 Cm! ( )
while @ and J are vectors with 2k components,
o=IT, U, I=1[/, II. (24)

The dot in (22) denotegs differentiation with respect to time.

We present the values of the matrix elements:

N, ON ON, N, N, N
Lrs =3 L T, s__:_ r_. LI r_. s_\) Q» 25
(Erelg j"(ax X Y oy az az,d @5
Qe
(Cr)g=2 X C,N.NdQ, (26)
93
T ; '
(g =2 j (4 4+ ) N,dr, @)
e \ m
TANES: j (J:+J:," .iﬁ ) N,dr. (28)
_ . /

re

The elements (Lrs)e’ (Lrs)5 , and (Lpg)m of the matrices Lg, L, and Ly, are obtained from (25) by the
respective substitution of the index q by €, &, andm, while the elements (Cyg)y, of the matrix Cy, are ob-
tained from (26) by substitution of the index q by m.

In the expressions Q€ during summation we take into account the contribution of each element; Q€ is
the region of each element, while I'® refers only to elements having an outer boundary on which the condi-
tiong (9)-(12) are gpecified.
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It should be noted that Eqgs. (22) are not linear, since the generalized flows J* and J* do not depend
on the values of the potentials at the boundary nodes. We note that this nonlinearity is siigglt, since it ap-
pears only in the vector J.

To solve the problem given by Egs. (22), discrete with respect to space, we use a difference scheme
that is three-layered with respect to time:

LY (@120 - @ o =803 1 (8 (%40 _ 5840y ong) L g0, (29)

After certain algebraic transformations we obtain the following expression for guccessive computa-
tion:
%80 . 1193 - C®(280)]7t [L® %31 L8 %8830 ®4%(00) - 7. (30)

Since only the central values of the matrices L, C, and J take part in the expressions (29) and (30), at the
point r we can avoid iterations for finding ® in each layer, but in the calculation of the matrices L and C in
the given case this fact yields no special advantages.

To solve the problem it ig yet necessary to know the values of the vector in the first two layers.
Since we assume that we have stationary conditions, necessary values can easily be specified.

The given method is fairly general and applicable for arbitrary discretization of multidimensional
finite-element problems. However, in our investigations we use a two-dimensional model to establish the
suitability of the method for solving concrete problems.

The program realizing the algorithm just described is written in FORTRAN IV similarly to the pro-
grams found in [7].

The isoparametric elements are used for regions of various shape and they enable us to "catch" a
quadratic variation of the potentials along the edges of an element, and a parabolic form of a boundary.
Each element is bound with eight degrees of freedom (nodes in one element)x 2 (values of the potentials at the
node). The integrals (25)-(28) are computed approximately. The complete theory of these operations can
be found in [7].

Thus, the matrices L and C for each element are calculated and are recorded onto a magnetic tape.
The program for the solution, hased on the elimination method of Gauss, is transformed on the magnetic
tape for L€ and C€; it forms the matrices L and C and solves the system of algebraic equations for the un-
known values of the potentials.

When the matrices L and C do not depend on time, we can economize the computations in each layer
of the inverse matrix:

[Li3-- Cl{248)] 7,
which, according to the expression (30), is multiplied by the variable vector
[Lp%/3 -+ Ld®2%3 — Cp¥48)2A0) + /9.

The final results are the potentials of heat and mass transfer T and U at each layer for each time in-
terval. If so desired, they can be recorded on the magnetic tape and later used for the analysis of the
stresses caused by temperature and moisture gradients,

In the debugging of the program the results were compared with the analytic solutions from [3] for a
single one~dimensional problem. In the first example a problem is solved, concerning the variation of the
temperature and mass in a plate, when the surface X = 0 is isolated, while on the surface X = 1 convective
boundary conditions are specified. The initial conditiong are taken as constant {T; =0, Uj = 0), as are the
potentials of transfer of the surrounding medium (T, =1, U, =1). The analytic solution was calculated by
means of the first five eigenvalues for the case Ly =0.3, € = 0.5, Ko = 1.2, Pn = 0.5, Biq = 1.0, Biy, = 10.0,
and 6 = 0,5, 1, 2,4, Inthe second example the same problem is considered, but with boundary conditions
of the first kind on the boundary X = 1, obtained, if we assume Big = Bip, = 1000.

We solved by the finite~element method a two-dimensional problem that essentially differs from a
one-dimensional problem, since the upper and lower boundaries of the rectangle under consideration were
specified as nonconductive. Even for the relatively coarse division of the region into five parabolic ele-
ments and in two examples the deviation of the numerical solution from the analytical golution is less than
1%.
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In thig approach, there can be an arbitrary law governing the interaction of the molecules with the
gurface. We restrict the present analysis to the most common approximation, according to which some of
the molecules are reflected ina gpecular manner, while the rest are reflected in a diffuse manner:

fﬁ_(x= O’ Uix’ viy’ viz) = (1 - qz) fr(x= 01 —vix’ Uiy’ v;’z) _:" qi fl.'M‘ (3)

Here q; is the accommodation coefficient of component i, and fj); is the distribution function of the reflected
molecules, which ig equal to the Maxwell distribution; i.e.,

m,  \32 miv—fT .
fim=n, : exp | — —— (i=1, 2.

omkT | okT

Below we use superscript minug and plus signs to denote the distribution functions of the incident
and reflected molecules, respectively.

Obviously, the wall affects the velocity distribution of the molecules over only a finite range, so that
far from the wall the distribution function converts into the Chapman—Enskog volume distribution [3].
Also, using conditions (1) and (3}, we can write the distribution funetion for component i, that is, fj, in the
following manner:

, ; du [ omy 2 / du - .
fi=H {H"% Vsl T :T‘ Uiy (7}2—) x—B; Lw) CiaCiy (7?),, + @, ¢ x)} (i=1,2, @)

.\ 9 « 12
0 o g, mi i -— —mivi ) M _E. = mi v 0.
fi=m ( kT ) FPA T )7 C kT o

where B; are coefficients independent of E; Equations for B; are given in [3].

In (4), we have

(=1, 9.

i

D, — {(D:,- (Ci’ x)’ Cix<0
@7 %), €>0

We seek the correction Q?(E{, X) as an expansion in Sonin polynomials in the corresponding velocity
space:

OF (¢, %) = a5 (%) ¢y + a5 (V) ¢ty (=1, 2).

The function &;(c, x) is given by

-~ 1 1 . . [
@, (c;, ) = - (af; -+ ag) ¢y + - (ag; — ag;) c;y sign e, +
1 R . .
+ 5 {af; + a3))¢i,Cy T+ - (af; —ap) ¢y signe, (=1, 2),
where
sign ¢;, = [ L >0
o=, <<

For the average velocity of the molecules of component i we easily find

L —_

[ du N 1 Lo a'i_ i . .
Uy = Uy -+ ( e ) X - a3 (ag; + ag;) + 147/—;1—* (i=1, 2). (6)
Assuming
Pl ) (7
Py - Oglty

we substitute (4)-(6) into system (2). Then multiplying the corresponding equations successively by

-2 -2

€y (1 = signeyy) e dE:.; CinCiy (1 £ signeyy) e de; (i=1,72)
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The universality of the finite-element method allows it to be used in practice, especially when we have
to deal with complex regions and variable physical characteristics.

Bi, = aq /g, Bim = om /Ay
Cq, Cm
Ko = ey r(uj —ug)/eq t,—ty)

Ly = (Ap/pcy)/ (g/pcq)
n
Pn = (tz—t1)/ (u;—ug)

NOTATION

are the heat and mass exchange criteria of Biof;

are the gpecific heat and mass of the body;

is the Kossovich eriterion; specific fluxes of heat and mass per char-
acteristic dimension of the body:;

is the Lykov criterion;

is the outer normal of the surface of the body;

is the Postov criterion;

r is the specific heat of phase conversion;
t is the temperature;
u is the potential of mags transfer;
X,V,% are the gpatial coordinates;
Og» Oy are the coefficients of heat and mass exchange;
Yo Yyo Yz are the direction coefficients of the outer normal of the surface of the
body:;
r is the surface of the body;
£,0 are the coefficient of thermal gradient, criterion of phase transition;
Agqs Am are the coefficients of thermal and mass conductivity;
2 is the region occupied by the body;
g is the density of the moist body;
T is the time,
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